Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Roman I. Zubatyuk, ${ }^{\text {a* }}$ Oleg I. Kharanenko, ${ }^{\text {b }}$ Oleg V. Shishkin, ${ }^{\text {a }}$ Vladimir I. Dulenko ${ }^{\text {b }}$ and Alexander V. Kibalny ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine, and ${ }^{\text {b }}$ L. M. Litvinenko Institute for Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, 70 R. Luxemburg Str., Donetsk 83114, Ukraine

Correspondence e-mail:
roman@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(carbazol-9-ylmethylene)-3,4diphenylcyclobutane

Carbazolyl fragments of the title compound, $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{2}$, are involved in intramolecular stacking interactions between each other and intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. This probably causes some of their non-planarity.

Comment

We have previously demonstrated that the dimerization product of carbozolylallene is 1,2-bis(carbazol-9-ylmethylene)cylobutane (Kharanenko et al., 2004). It can be generated both from propynylcarbazole and its precursor 1-(carbazolyl)-2,3-dichlorpropane. We have also observed the formation of this compound by alkylation of carbazole by propargyl bromide. Similarly, when 3-phenyl-2-propylchloride was alkylated, we obtained the product, (I), which IR and NMR spectroscopy confirmed was not an acetylene derivative. We now report the X-ray diffraction study of this compound.

Received 21 January 2004 Accepted 23 January 2004 Online 30 January 2004

The structure analysis reveals that the product of the reaction is 1,2-bis(carbazol-9-ylmethylene)-3,4-diphenylcylobutane. In the crystal structure, the title molecule has geometrical parameters which are very close to C_{2} point-group symmetry. The approximate twofold axis intercepts the C29C30 and C27-C28 bonds. The cyclobutane ring adopts a slightly twisted conformation, the $\mathrm{C} 27-\mathrm{C} 30-\mathrm{C} 29-\mathrm{C} 28$ torsion angle being $8.6(2)^{\circ}$. For this reason, the $\mathrm{C} 25=\mathrm{C} 27$ and $\mathrm{C} 26=\mathrm{C} 28$ double bonds are not coplanar [C25-C27-C28$\left.\mathrm{C} 26=-16.1(6)^{\circ}\right]$. The phenyl substituents have a transorientation with respect to the ring $[\mathrm{C} 31-\mathrm{C} 30-\mathrm{C} 29-\mathrm{C} 37=$ $\left.101.3(2)^{\circ}\right]$.

The strong steric repulsion between the bulky substitutients at atoms C27 and C28 leads to significant deformation of the molecular geometry. The tricyclic fragments are not planar. The angles between the mean planes of the terminal phenyl rings are $5.8(1) \quad(\mathrm{C} 1 \cdots \mathrm{C} 6-\mathrm{C} 7 \cdots \mathrm{C} 12)$ and $3.4(2)^{\circ}$ (C13...C18-C19‥C24). Rotation of the heterocyclic systems with respect to the $\mathrm{C}=\mathrm{C}$ double bonds [C13-N2$\mathrm{C} 26-\mathrm{C} 28$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 25-\mathrm{C} 27=-51.5$ (4) and $-49.3(4)^{\circ}$, respectively] results in elongation of the C25-N1 and $\mathrm{C} 26-\mathrm{N} 5$ bonds (Table 1) compared with the mean value of $1.355 \AA$ for $\mathrm{C} s p^{2}-\mathrm{N}$ bonds (Bürgi \& Dunitz, 1994). It is also observed that the exocyclic bond angles C25-C27-C28

Figure 1
View of the title compound. The non-H atoms are shown with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Centrosymmetric dimer of the title compound, linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds.
and $\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 26$ are larger than the angles $\mathrm{C} 25-\mathrm{C} 27-$ C 30 and $\mathrm{C} 26-\mathrm{C} 28-\mathrm{C} 29$. The N atoms adopt a trigonalpyramidal configuration; the sums of the bond angles at these atoms are 359.0 and 359.1° for N 1 and N2, respectively. The slight distortions are probably due to stacking interactions between the carbazolyl fragments [the distance between the N atom and the mean plane of the opposite tricyclic ring system is $\sim 2.98 \AA$ and the angle between the planes is $\left.25.50(5)^{\circ}\right]$.

In the crystal structure, molecules are linked into centrosymmetric dimers by $\mathrm{C} 34-\mathrm{H} 34 \cdots \pi$ intermolecular hydrogen bonds (Fig. 2). Atom H34 is situated approximately above the mid-point of the $\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 8^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y$, $1-z$] bond (designated X). The hydrogen-bond parameters are $\mathrm{H} 34 \cdots X 2.74 \AA$ and $\mathrm{C} 34-\mathrm{H} 34 \cdots X 156^{\circ}$.

Experimental

The title compound was prepared according to the procedure of Kharanenko et al. (2004). Suitable crystals were obtained by evaporation of a pyridine solution (m.p. 391-392 K). Spectroscopic analysis, IR (KBr, $\left.v, \mathrm{sm}^{-1}\right): 3040,1930,1890,1780,1640,1600,1490$, $1450,1330,1230,740,720 ;{ }^{1} \mathrm{H}$ NMR (py- d_{5}, p.p.m.): $4.85(2 \mathrm{H}, s, \mathrm{CH})$, $6.95(2 \mathrm{H}, s, \mathrm{CH}), 7.1-7.8(26 \mathrm{H}, m, \mathrm{H}$-aromatic); analysis, calculated for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{2}$: C 89.5, H 5.4, N 5.1%; found: C 89.68, H 5.34, N 4.98%.

Crystal data
$\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{2}$
$M_{r}=562.68$
Triclinic, $P \overline{1}$
$a=8.830$ (2) \AA
$b=11.932$ (2) A
$c=14.888$ (3) \AA
$\alpha=90.94$ (2) ${ }^{\circ}$
$\beta=105.58$ (2) ${ }^{\circ}$
$\gamma=92.12$ (2) ${ }^{\circ}$
$V=1509.4$ (5) \AA^{3}
$Z=2$
$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=10-12^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Siemens $P 3 / P C$ diffractometer $\theta-2 \theta$ scans
Absorption correction: none 5672 measured reflections
5298 independent reflections
2469 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.1^{\circ}$
$h=0 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$
2 standard reflections every 98 reflections intensity decay: 5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.128$
$S=0.96$
5298 reflections
397 parameters
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

N1-C25	$1.403(3)$	C27-C28	$1.463(3)$
N2-C26	$1.400(3)$	C27-C30	$1.530(3)$
C25-C27	$1.333(3)$	C28-C29	$1.528(3)$
C26-C28	$1.332(3)$	C29-C30	$1.585(3)$
C7-N1-C25	$127.7(2)$	$\mathrm{C} 25-\mathrm{C} 27-\mathrm{C} 28$	$139.9(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$107.61(18)$	$\mathrm{C} 25-\mathrm{C} 27-\mathrm{C} 30$	$127.8(2)$
$\mathrm{C} 25-\mathrm{N} 1-\mathrm{C} 1$	$123.7(2)$	$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 30$	$92.11(18)$
$\mathrm{C} 19-\mathrm{N} 2-\mathrm{C} 26$	$123.1(2)$	$\mathrm{C} 26-\mathrm{C} 28-\mathrm{C} 27$	$139.7(2)$
$\mathrm{C} 19-\mathrm{N} 2-\mathrm{C} 13$	$107.95(19)$	$\mathrm{C} 26-\mathrm{C} 28-\mathrm{C} 29$	$128.5(2)$
$\mathrm{C} 26-\mathrm{N} 2-\mathrm{C} 13$	$128.1(2)$	$\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29$	$91.72(17)$
$\mathrm{C} 27-\mathrm{C} 25-\mathrm{N} 1$	$127.1(2)$	$\mathrm{C} 28-\mathrm{C} 29-\mathrm{C} 30$	$87.61(17)$
$\mathrm{C} 28-\mathrm{C} 26-\mathrm{N} 2$	$127.5(2)$	$\mathrm{C} 27-\mathrm{C} 30-\mathrm{C} 29$	$87.16(16)$

All H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}=1.2$ times $U_{\text {eq }}$ of the carrier atom.

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1991); software used to prepare material for publication: SHELXL97.

References

Bürgi, H.-B. \& Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.
Kharanenko, O., Shishkina, S., Shishkin, O., Kibalny, A. \& Dulenko, V. (2004). Chem. Heterocycl. Compd (Engl. Transl.). In the press.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

